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WE L COM E !

 Welcome to the Advanced part of Cabri II Plus user manual.

This 3 chapter section presents some advanced problems amusing to explore and 
easy to solve using Cabri geometry. Those problems complement the Tutorial 
section for users who intend to pursue their discovery of Cabri II Plus.

Those exercises are designed for advanced level or undergraduate work. They are 
largely independent from each other and the reader is invited to duplicate the 
detailed construction methods and then try the listed exercises. Exercises marked 
with an asterisk are more difficult. 
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1CHA P T E R

PEDAL TRIANGLES

 Use the [Points]Point  tool to start with three points, A, B, C, anywhere on the 
drawing area. First construct the straight lines AB, BC and CA, using the [Lines]Line 

 tool. Create a fourth point M, anywhere on the plane, and the orthogonal 
projections of M : C’, A’ and B’, respectively, on these lines. These points are 
constructed by fi rst creating the perpendiculars through M to each of the lines in 
turn, using the [Constructions]Perpendicular Line  tool. Use the [Points]Point 

 tool to pick up the point of intersection of each perpendicular with its 
corresponding line. The [Points]Point  tool constructs implicitly the points of 
intersection of two objects. It merely requires the cursor to be placed close to an 
intersection, when Cabri II Plus displays the message Point at this intersection or, in 
an ambiguous case Intersection of... followed by a menu list.

The three points A’, B’ and C’ defi ne a triangle which can be drawn using the 
[Lines]Triangle  tool. It is called the pedal triangle of ABC. The interior of the 
triangle can be coloured, using the [Attributes]Fill...  tool. The point of interest 
here is the area of the triangle with regard to the position of M. The area of the 
triangle is measured, using the [Measurements]Area  tool. The resulting value 
is a «geometrical» area, taking no account of the orientation of the triangle. The 
measurement is given in cm2 and can be placed anywhere on the drawing area. 
By clicking on the number with the right mouse button, a shortcut menu appears, 
with the option to change to the «algebraic» area, the sign of which depends on the 
orientation of the triangle.

Area = 12.19 cm≤
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 Figure 1.1 - The pedal triangle for M, and its area.

Moving on
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We shall consider how the area of A’B’C’ varies, depending on the position of M. 
There are several possible strategies for this. For example, activate the [Text and 
Symbols]Trace On/Off  tool (which requires selection of the object to be traced, 
M here – so click on it). Now move M while attempting to keep the area of A’B’C’ 
constant. Successive positions of M are displayed on the screen, giving the general 
appearance of a contour line for equal values of the area of A’B’C’. Another strategy 
could be to use the locus of points on a grid to draw a visual representation of the 
area of A’B’C’ for a large number of positions of M.

Here, we shall use this latter strategy, and draw the circle, center M, which has an 
area proportional to that of A’B’C’ for a large number of positions of M. To do this, 
it is necessary first to calculate the radius of the circle, proportional to the square 
root of the area of the triangle. Activate the [Measurements]Calculate...  tool, 
and enter the expression sqrt(then select the number displaying the area of the 
triangle) to insert that into the expression, which becomes sqrt(a. Now close the 
bracket). Divide by 10 to avoid having a circle which is too large. The expression 
in the calculator is now sqrt(a)/10. Evaluate this by clicking on the = button, then 
drag the answer to an appropriate position on the sheet. To draw a circle, centre M, 
using the radius we have just calculated, activate the tool [Constructions]Compass 

. Select the number, just moved onto the sheet, then the point M. The circle, 
center M, with the required radius appears. We can now see the changes in the 
area of the circle surrounding M, as the point is moved.

r = 0.35 cm
Area = 12.19 cm≤
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Figure 1.2 - A circle is drawn, centre M, with area proportional to that of A’B’C’.
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 We shall now define a grid, and redefine M in terms of the grid, then draw the 
circles representing the area of the pedal triangle at each point of the grid. To define 
the grid, a system of axes is required. We shall take the default axes which are 
available for any figure. To display them choose [Attributes]Show Axes . Next, 
activate the [Attributes]Define Grid  tool, and select the axes. A grid of points 
appears.  

1

1

r = 0.35 cm
Area = 12.19 cm≤
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Figure 1.3 - A grid is constructed, using the default axes for the figure. M is then redefined as 
any point on the grid.

M is still an independent, movable point in the plane; we shall redefine it so that 
it is limited to the grid points. Activate the [Constructions]Redefine Object  
tool, then select M. Choose the option Point on an object from the menu list that 
appears, and then select any point on the grid. M is now constrained to the points 
of the grid.

The [Constructions]Locus  tool can now be used to construct the set of circles 
which are obtained by moving M around the grid. Select the circle then the point 
M to obtain the locus of circles as M moves over the grid.

It can be shown (see for example Geometry Revisited by H.M.S. Coxeter and S.L. 
Greitzer, Mathematical Association of America, section 1.9) that the contour lines of 
equal areas of the pedal triangles are circles with the same centre as that of the 
circumcircle of ABC. In particular, triangle A’B’C’ has zero area if M is on the 
circumcircle of ABC, or equivalently, points A’, B’ and C’ are collinear if and only if 
M lies on the circumcircle of ABC.
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r = 0.35 cm
Area = 12.19 cm≤
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Figure 1.4 - The distribution of the area of the pedal triangle as a function of the position of M.

 
Exercise 1 - With M on the circumcircle of ABC, the three points A’, B’ and C’ are 
collinear and A’B’C’ is called the Simson 1 line for M (or Wallace 2 line – this line was 
incorrectly attributed to Simson for many years, as it was in fact published in 1799 
by Wallace). Construct the envelope of Simson lines. (Use the [Constructions]Locus 

 tool). This curve, which is invariant under a rotation through 120°, is called a 
deltoid (or tricuspoid or Steiner’s 3 hypocycloid), since its shape is rather like that of 
the Greek letter ∆. It is tangent to the three lines AB, BC and CA. It is an algebraic 
curve of degree 4. You can check this in asking for its equation through the 
[Measurement]Equation or Coordinates  tool.

Exercise 2 - For the deltoid of the previous exercise, construct the center, the three 
points where the curve touches the three straight lines, and the largest circle which 
can be inscribed in the curve.

1 Robert Simson,  1687-1768
2 William Wallace,  1768-1843

3 Jakob Steiner,  1796-1863
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Figure 1.5 - The envelope of the Simson lines of triangle ABC is called a deltoid. It has the 
same symmetries as an equilateral triangle.
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2CHA P T E R

FUNCTIONS

Graphs of functions are easy to construct in Cabri II Plus, thanks to its system of 
axes and the expressions tool. The graph can then be used to study the properties of 
the function. In this chapter, we shall study the polynomial function of degree 3.
 

f(x) = x3  - 2x + 2
1

First, display the coordinate axes, using [Attributes]Show Axes . Next, we need 
to create the corresponding expression on the drawing area. Once an expression 
has been placed on the drawing area, its value can be calculated for different 
values of its variables. For this function, activate [Text and Symbols] Expression 
, and type in x3 - 2*x + 1/2. The permitted names for variables are the letters: a, b, 
c... z. Mark a point P, somewhere on the x-axis (using the [Points]Point  tool. 
Display its coordinates by activating [Measurement]Equation or Coordinates 
, then selecting P. The text displaying the coordinates is initially attached to P, and 
moves with the point. Using the [Manipulation]Pointer  tool, the coordinates 
can be detached from P, and placed anywhere on the fi gure. To return them to the 
point, click-and-drag close to P.
 

1

1

x^3-2*x+1/2

1

1

x^3-2*x+1/2
(3.47, 0.00)P

Figure 2.1 - [Left]. The expression corresponding to the function is entered on the fi gure. 
[Right]. Point P is marked on the x-axis and its coordinates displayed using 
[Measurement]Equation or Coordinates.

Moving on
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Next, we need the value of f(x) when x is the x-coordinate of P. Activate the 
[Measurement]Apply an Expression  tool, and click on the expression, then the 
x-coordinate of P in the brackets. Here, the order is important. 

1

1

x^3-2*x+1/2
(3.47, 0.00)

35.47

P

Figure 2.2 - The [Measurement] Apply an Expression tool is used to calculate the value of f(x) 
at the x-coordinate of P.

This value is now transferred to the y-axis, using the [Constructions]Measurement 
Transfer  tool, and then selecting the value followed by the y-axis. After this, one 
merely has to construct the lines parallel to each of the axes, through each of the 
marked points, using the [Lines]Parallel Line  tool. Their point of intersection can 
be labelled M, and has coordinates (x,f(x)). In the following figure we have moved P 
to a point closer to the origin, (1.89,0) so that M is visible on the sheet. 

0.5

0.5

x^3-2*x+1/2
(1.89, 0.00)

3.45

P

M

Figure 2.3 - Construction of the point M(x,f(x)) using measurement transfer.

The graph of the function is obtained as the locus of M as P moves along the x-
axis. It is constructed using the [Constructions]Locus  tool by selecting M then 
P. In order to see the interesting part of the graph of the function, the origin can be 
moved (using drag-and-drop), and the scale changed (by dragging-and-dropping 
any of the scale marks on the axis).
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x^3-2*x+1/2

(1.72, 0.00)

2.12

P

M

Figure 2.4 - The graph of the function is finally created using the tool [Construction]Locus. 
The system of axes can be moved and resized so that the interesting part can be seen.

We shall now construct an approximation of the tangent to this curve at a given 
point. For small values of h, it is known that

f ' (x)      f (x+h) - f (x-h)
2h

 
From the geometrical point of view, this approximation takes the gradient of the 
tangent to be the same as the gradient of the chord linking the points on the curve 
whose x-coordinates are x- h and x+h. Using [Text and Symbols]Numerical Edit 
, a value for h is defined, 0.3 here for ease of construction. The value of h can then 
be changed to a smaller one, giving a better approximation to the tangent. Next, 
construct a point A on the x-axis, and the circle center A, radius h.

The circle is obtained by activating the [Constructions]Compass  tool then 
selecting the value h followed by point A. The two points of intersection of this 
circle with the x-axis have x-coordinates x-h and x+h, if x is the x-coordinate of 
A. Draw the three lines parallel to the y-axis ([Constructions]Parallel Line ) 
which pass through the two points of intersection, and the point A. The points of 
intersection of these three lines with the curve provide the points B-, B, B+ which 
are points on the curve with x-coordinates x-h, x, and x+h, respectively.
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As the figure is becoming rather cluttered, hide those elements which are no longer 
being used. Activate the [Attributes]Hide/Show  tool, and select the elements 
to be hidden. Here, we should hide P,  M, the two construction lines for M, the 
coordinates of P, and the value of the function at P. The hidden objects can only 
be seen as marquees («marching ants» outlines), and are only visible when the 
[Attributes]Hide/Show  tool is active. In order to make a hidden object visible 
once more; just reselect it when this tool is active.

0.5

0.5

x^3-2*x+1/2
h = 0.3

A

B-
B B+

0.5

0.5

x^3-2*x+1/2
h = 0.1

A

B

 
Figure 2.5 - [Left].The three points on the curve B-, B, B+ with x-coordinates x- h, x, and x+h 
are constructed. 
[Right]. The approximation to the tangent at B, once the construction elements have been 
hidden.

The approximation to the tangent is now the line parallel to B-B+ which passes 
through B. Construct the latter line using the [Lines]Line  tool, then the line 
parallel to it using [Constructions]Parallel Line . Now hide the line through 
B-B+ and the other construction elements until only h, A, B and the «tangent» 
at B are visible. It can be seen that the value h= 0.3 already gives a very good 
approximation to the tangent. Nevertheless, this can be improved by decreasing the 
size of h, for example by taking 0.0001.

By moving the point A along the x-axis, it is possible to see the position of the three 
roots of the equation f(x) = 0, the stationary points of f, and the point of inflexion of 
the curve.

For information, the three solutions of f(x) = 0 are approximately r1 = –1,52568, 
r2 = 0,25865 and r3 = 1,26703. The x-coordinates of the stationary points are 
e1 = -    6/3≈ - 0,81649 and e2 =     6/3 ≈ 0,81649. The point of inflexion is at 
(0,1/2).
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Exercise 3 - Using the gradient of the tangent, draw the graph which approximates 
the curve of the gradient function.

Exercise 4 - The tangent cuts the x-axis at a point A’ with x-coordinate x’, which 
is, in general, a better approximation to the root, provided A is already in the 
neighborhood of a root of f(x) = 0. This statement is the basis of the iterative method 
known as the Newton1 - Raphson2 method for finding the root of an equation. 
Construct the point A’, then iterate A’’ by the same method, and compare the 
position of A’’ to that of A. In particular, two positions can be found for A, other 
than the three roots, for which A’’ and A coincide. For information, these are the 
two real roots of a polynomial of degree 6, whose values are approximately - 
0.56293 and 0.73727. It can also be seen that a poor choice of A can cause the 
method to diverge, by choosing A so that A’ is one of the two points where the 
derivative is zero.

0.5

0.5

x^3-2*x+1/2

A

B

A'

B'

A''

Figure 2.6 - The first two iterations of the Newton -Raphson method, starting from point A.

Note: the same graph can be obtained straightforwardly through the [Measurement]
Apply an Expression  tool.
 
 

1 Sir Isaac Newton, 1643-1727
2 Joseph Raphson,  1648-1715
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3CHA P T E R

TESSELLATIONS

We shall construct several tessellations of the plane, using polygons. Let us start 
with some simplifi ed defi nitions, which are suffi cient for the following work. An 
interested reader might refer to Tilings and Patterns by Branko Grünbaum and G.C. 
Shepherd, Freeman 1987. A large number of Internet websites also give information 
about tessellations and symmetry groups.

We say that a set of closed plane shapes is a tessellation of the plane if their interior 
parts are non-overlapping, and the union of all the enclosed parts covers the entire 
plane. These plane shapes are called tiles of the tessellation. The intersection of two 
tiles which is a segment of a line or a curve is called an edge, and the intersection 
of two or more tiles at a single point is called a vertex.

For the tessellation P, we write S(P) for the set of isometries, f, of the plane such 
that the image of every tile of P under f is a tile of P. S(P) is a group, called the 
symmetry group of the tessellation. There are several cases to be considered for 
such a group:

• S(P) contains no translations. S(P) is then isomorphic to a cyclic group (possibly 
reduced to the identity element) generated by rotation through 2½/n, or to a 
dihedral group, being the symmetry group of a regular polygon with n sides.

• S(P) contains translations which are all collinear. S(P) is then isomorphic to one 
of the seven frieze groups. 

• S(P) contains two translations vectors which are non-collinear. Then S(P) is 
isomorphic to one of the 17 wallpaper groups (or plane crystallographic groups), 
and the tessellation is said to be periodic.

If all the tiles of the tessellation can be obtained as isometries of a single tile, 
we say that the tessellation is monohedral.In this part, we are only interested in 
the case of monohedral tessellations by tiles which are polygons. We shall fi rst 
construct a monohedral tessellation of the plane by a triangle.

Moving on
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Construct a general triangle ABC, using the [Lines]Triangle  tool, then the 
midpoint, I, of one of its sides, BC for example, using the [Constructions]Midpoint 

 tool. Let D be the image of A under a half-turn about I (point symmetry), which 
is created using the [Transformations]Symmetry  tool, selecting first the object to 
be transformed: A, then the center: I.

A
B

C

I
D

Figure 3.1 - The image of triangle ABC is created, under rotation through 180°, about the 
midpoint of one of its sides ([BC] here). This produces a parallelogram ABDC.

The quadrilateral ABDC is a parallelogram and it can be used to tessellate the 
plane. The two vectors AB and AC are created next, using the [Lines]Vector  
tool. Those vectors are used to duplicate the triangles ABC and BCD using the 
[Transformations]Translation  tool.

A
B

C

Figure 3.2 - The [Transformations] Translation tool is used to create the images of the two 
triangles under translation by the vectors AB  and AC .

The same approach can be used to tessellate the plane with any quadrilateral, 
convex or otherwise but not crossing sides. The image of the quadrilateral is 
created under rotation about the midpoint of one of its sides. This produces a 
hexagon whose sides are pairwise parallel, which is then used to tessellate the 
plane by translations.
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Figure 3.3 - The same type of construction is used to tessellate the plane with any 
quadrilateral, convex or concave, provided it is not a crossed quadrilateral.

For other convex polygons, the situation is much more complex. It can be shown 
that it is impossible to tessellate the plane with a convex polygon with more than 
6 sides. There are three types of convex hexagon which will tessellate the plane 
and at least 14 types of convex pentagon, each type being defined by a set of 
constraints on the angles and the sides. At the present time, it is still not known if 
the 14 known types constitute the complete solution to the problem. The last of the 
14 was discovered in 1985. As far as we know, the question of concave polygons 
has not been resolved.

Exercise 5 - Construct a convex pentagon ABCDE, subject to the following 
constraints: the angle at A is 60°, at C it is 120°, AB = AE, CB = CD. These 
constraints do not define a unique pentagon, but a family of pentagons. For the 
construction there are at least three independent points.

A

B

E

D

C

Figure 3.4 - Construction of a pentagon under the constraints: Â = 60°, Ĉ = 120°, AB = AE 
and CB = BD. A, B and C are independent points in the plane.
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Make successive rotations about A through an angle of 60° using the 
[Transformations]Rotation  tool. This tool requires selection of: the object to be 
transformed, an angle, and the center of rotation, to construct a «flower» with 6 
pentagonal petals. The angle required by the tool is a number on the drawing area, 
which has previously been created using the [Text and Symbols]Numerical Edit  
tool.

Figure 3.5 - The basic pentagon is duplicated by rotation about center A, through an angle of 
60°, to form a 6-petalled «flower».

These flowers can now be assembled, using translations, to tessellate the plane. 
This tessellation is type 5 according to the classification given in Tilings and 
Patterns. It was first published by K. Reinhardt in 1918. This tessellation is not only 
monohedral, that is to say that all the tiles are identical within an isometry, but it is 
also isohedral: all pentagons are surrounded by the same pattern of pentagons in 
the tessellation.

60∞

Figure 3.6 - The flowers are assembled by translations to cover the plane.
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Exercise 6 - Construct a Pentagon ABCDE with constraints: 
Ê = 90°, Â + D = 180°, 2 B  - D = 180°, Ĉ + D = 360°, EA = ED = AB + CD.

D

E A

I

B

C

Figure 3. 7 - A pentagon of type 10, according to the classificationin Tilings and Patterns. 
This pentagon is the basis for a monohedral tessellation of the plane. Points A and E are 
independent points of the plane, and point I is free to move on the arc of a circle.

The tessellation is constructed by first making three copies of the tile, using 
successive rotations through 90° about E, to obtain a truncated square. These 
squares are then assembled in strips using translation in one direction. The strips of 
squares are then separated by strips of pentagons, as shown below. 

Figure 3.8 - A monohedral tessellation of the plane by convex pentagons. This tessellation 
was created by Richard E. James III, following the publication of an article by Martin Gardner 
in Scientific American in 1975. The complete article can be found in «Time travel and other 
mathematical bewilderments», Martin Gardner, Freeman 1987.


