CABRI® II Plus

Créateur d'Outils Mathématiques

PAVAGES DE PENROSE

Approfondissement

Ce chapitre fait référence aux définitions données dans le chapitre **Pavages** du document **APPROFONDISSEMENT.pdf**.

Il existe des ensembles de polygones à partir desquels on ne peut construire aucun pavage périodique. Le plus connu est certainement celui des tuiles de *Penrose*¹, du nom du mathématicien *Roger Penrose* qui les a découvertes en 1974. Ces tuiles sont appelées *Kite* (cerf-volant) et *Dart* (flèche). Un motif coloré est dessiné sur les tuiles, et seuls les assemblages respectant la correspondance des couleurs sont autorisés, ce qui écarte les pavages périodiques. Ces deux tuiles sont des quadrilatères dont les angles sont des multiples de \emptyset = 36°, et dont les longueurs des côtés sont 1 et \emptyset , le nombre d'or : \emptyset =(1+ 5)/2. Le motif coloré présenté ici est dû à *John Conway*², et donne d'étonnantes courbes présentant une invariance par rotation d'angle \emptyset .

Figure 1 - Tuiles Dart (à gauche) et Kite (à droite).

Les tuiles Kite et Dart étant un peu longues à construire, nous allons créer des macro-constructions permettant d'en créer des copies librement sur la feuille en quelques clics.

Une macro-construction (ou macro) est créée à partir d'un sous-ensemble d'une figure. Elle est définie à partir d'un ensemble d'objets initiaux, et d'un ensemble d'objets finaux construits à partir des objets initiaux uniquement. Une fois la macro définie, l'utilisateur a accès à un nouvel outil dans la boîte à outils [Macro]. Cet outil attend la sélection d'un ensemble similaire aux objets initiaux, et reproduit

¹Sir Roger Penrose, 1931 ²John Horton Conway, 1937 la construction mémorisée dans la macro à partir de ces objets. Lors de la création de la macro, on a la possibilité de la nommer, de lui dessiner une icône et de la sauvegarder dans un fichier séparé. Pour utiliser une macro d'une figure dans une autre, il suffit d'ouvrir simultanément les deux figures, et la macro sera utilisable dans les deux. Une macro est enregistrée dans le fichier d'une figure si elle y est utilisée ou si elle a été créée dans cette figure. On peut redéfinir une macro, en définissant une macro qui ait le même nom et construise des objets de même type. Cabri II Plus demande lors de la validation de la macro s'il faut remplacer l'ancienne ou la compléter. Si l'on choisit de la compléter, on peut utiliser indifféremment les deux macros. Par exemple, on peut définir une macro prenant comme entrée soit deux points, soit un segment. On dit dans un tel cas que l'on a «surchargé» la macro.

Nous allons définir une macro **Dart 1 C** qui, à partir de deux points A et B, construit une tuile Dart s'appuyant sur le segment [AB], à gauche du segment en regardant B à partir de A, telle que le côté AB soit un côté court (d'où le 1) de la tuile et le pied de l'arc situé sur le segment [AB] soit plus près de A que de B (d'où le **C**, pour «court») (*Figure 4*). Nous définirons également la macro **Dart 1 L**, construisant une tuile Dart à partir de deux points A et B, à gauche de AB, telle que le côté [AB] soit encore un côté court, mais telle que le pied de l'arc situé sur [AB] soit plus loin de A que de B (d'où le **L** pour «long»).

De la même façon, on construira Dart phi L, Dart phi C, et les quatre macros correspondantes pour Kite.

Pour définir ces macros, il faut d'abord construire les tuiles à partir de deux points. Nous allons construire en premier la macro Dart 1 C.

Prenons donc deux points quelconques *A* et *B*, construits avec l'outil [Points]Point •, qui représenteront la longueur unité des tuiles (*cf. figure 2*). On construit tout d'abord la droite (*AB*), avec l'outil [Lignes]Droite \frown , puis la droite perpendiculaire à (*AB*) passant par *A*, avec l'outil [Constructions]Droite Perpendiculaire \frown , et le cercle de centre *A* passant par *B* avec l'outil [Courbes]Cercle \bigodot , on sélectionne le centre *A* puis un point de la circonférence, *B*. On construit enfin un point d'intersection *C* de la perpendiculaire à (*AB*) avec le cercle. On sélectionnera l'intersection située «au dessus» de (*AB*), avec l'outil [Points]Point \bullet . Nous allons tout d'abord diviser le cercle en 10 secteurs égaux. Construisons le symétrique *B'* de *A* par rapport à *B*, et le symétrique *A'* de *B* par rapport à *A*. On utilise l'outil [Transformations]Symétrie Centrale $\bullet \bullet \bullet$, en sélectionnant d'abord le point à transformer, puis le centre de symétrie. Sur la droite (*AB*), si *A* est à l'abscisse 0 et *B* à l'abscisse 1, alors *B'* est en 2, et *A'* en -1. Nous avons également besoin du milieu *A''* de [*AA'*], obtenu avec l'outil [Constructions]Milieu $\bullet \bullet$. L'abscisse de *A''* sur (*AB*) est -1/2 avec les conventions précédentes. On construit alors le cercle de centre *A*" et passant par *C*. Ce cercle recoupe la droite (*AB*) en deux points *P* («à gauche» de *A*) et *Q* («à droite» de *A*). Les abscisses de *P* et *Q* sont respectivement - Ø et Ø - 1. Les perpendiculaires à (*AB*) passant par *P* et *Q* recoupent le cercle de centre *A* passant par *B*' en quatre points, J_2 , J_4 , J_6 , J_8 , sommets d'un pentagone régulier dont le cinquième sommet est *B*'. On complète le décagone par symétrie des quatre points précédents par rapport au centre *A*, pour obtenir la figure ci-dessous. On construit ainsi l'angle Ø= 36° et la longueur Ø = (1+ 5)/2, deux grandeurs intimement liées au pentagone régulier.

Figure 2 - Subdivision du cercle en 10 secteurs égaux.

Traçons le cercle de centre *A* passant par *P*. Le rayon de ce cercle est donc \emptyset . On reporte la subdivision en 10 secteurs sur ce cercle, puis on cache les éléments de construction devenus inutiles avec l'outil [Attributs]Cacher/Montrer $[\bullet]$, (*Figure 3*). Les sommets du décagone régulier inscrit dans le cercle de rayon \emptyset sont nommés *R*, 1, 2, 3, 4, *P*, 6, 7, 8, 9.

Figure 3 - On reporte la subdivision sur le cercle de centre A et de rayon Ø et on cache les objets devenus inutiles.

La *figure 3* constitue la figure de base de ce qui suit. Pour une meilleure compréhension de cette construction, on peut utiliser la figure **Figure de base.** fig fournie avec ce document, dans laquelle on pourra utiliser la fonctionnalité Edition/Revoir la construction.

La construction suivante est présentée ci-dessous en *figure 4*. On construit les points P_1 et P_2 avec l'outil [Points]Point •, intersections du cercle de centre A passant par B avec les droites joignant les points A et 3 d'une part et A et 6 d'autre part. Ensuite, avec l'outil [Lignes]Polygones M, on construit le quadrilatère ABP_1P_2 . Il s'agit d'une tuile Dart. Ensuite il nous faut construire dans l'ordre les points d'intersection P_3 et P_4 , le cercle C_1 (support de l'arc vert) avec l'outil [Courbes]Cercle O, le point d'intersection P_5 , le cercle C_2 (support de l'arc rouge), les points d'intersection P_6 et P_7 et enfin les arcs de cercle rouge et vert avec l'outil [Courbes]Arc O.

Pour bien se repérer dans la construction de la figure, on pourra utiliser la fonctionnalité Revoir la construction avec la figure **Tuiles Dart de type 1.fig**. Sur cette première tuile, le pied de l'arc en contact avec le segment [AB] est le point P_6 . Il est situé plus près de A que de B, donc cette tuile est appelée **Dart 1 C** (la distance AP_6 est «Courte»). L'aspect des arcs et du quadrilatère est modifié en utilisant les outils [Attributs]Épaisseur et [Attributs]Couleur N.

Figure 4 - Construction de la tuile Dart 1 C.

Nous pouvons maintenant créer la macro Dart 1 C.

Macro Dart 1 C :

Activons l'outil [Macro]Objets Initiaux X-, et sélectionnons *B* puis *A*. L'ordre de sélection des objets de même type est important; ils devront être sélectionnés dans le même ordre lors de l'utilisation de la macro. Activons maintenant l'outil [Macro]Objets Finals -Y, et sélectionnons le polygone Dart et les deux arcs rouge et vert.

Finalement, la macro est validée en activant l'outil [Macro]Valider une Macro . On l'appellera Dart 1 C. Lors de la validation de la macro, on peut dessiner l'icône de l'outil, la nommer, entrer quelques lignes de commentaires, donner un nom au premier objet créé (par exemple «Cette tuile Dart 1 C»), et protéger la macro par un mot de passe (utile en classe dans le cadre d'activités de décryptage de «boîtes noires»).

Une fois la macro validée, un nouvel outil apparaît dans la boîte à outils [Macro]. Nous allons tester notre nouvelle macro. Sélectionnons l'outil [Macro]Dart 1 C, et deux nouveaux points U et V. On obtient une nouvelle tuile Dart 1 C basée sur les points U et V.

Figure 5 - Application de la macro Dart 1 C à deux nouveaux points U et V.

Construisons à présent la médiatrice du segment [AB] avec l'outil [Constructions]Médiatrice \square , en sélectionnant les points A et B, puis la tuile symétrique de la tuile Dart précédente ainsi que les symétriques des arcs de cercle rouge et vert par la symétrie axiale d'axe la médiatrice de [AB] avec l'outil [Constructions]Symétrie Axiale \square (Figure 6). On obtient à nouveau une tuile Dart, mais avec les conventions adoptées on peut voir qu'il s'agit d'une tuile Dart 1 L. Comme on l'a fait précédemment pour la tuile Dart 1 C, on peut construire la macro permettant de créer la tuile Dart 1 L à partir des points A et B. La construction de cette tuile Dart 1 L est détaillée dans la figure Tuiles Dart de type 1.fig.

Figure 6 - Construction de la tuile Dart 1 L par symétrie par rapport à la médiatrice de [AB].

Exactement de même, on pourra s'aider de la figure **Tuiles Kite de type phi.fig** pour construire les tuiles Kite phi C et Kite phi L, ainsi que les macros correspondantes (*Figure 7*).

Figure 7 - Construction de la tuile Kite phi L. La tuile Kite phi C est obtenue par symétrie axiale par rapport à la médiatrice de [AB].

Les macros **Dart 1 L** et **Kite phi L** permettent de commencer le pavage «Soleil», qui a le même groupe de symétries que le pentagone régulier (*Figure 8*).

Figure 8 - Début du pavage «Soleil», construit à l'aide des macros Dart 1 C et Kite phi L.

REMARQUE :

Les huit macros dont on propose ici les constructions, Dart 1 C, Dart 1 L, Dart phi C, Dart phi L, Kite 1 C, Kite 1 L, Kite phi C et Kite phi L construisent toutes des tuiles gauches, c'est-à-dire situées à gauche du segment [AB] lorsque l'on regarde B à partir de A, en sélectionnant les points dans l'ordre (B,A). Au cours de la construction d'un pavage, on peut être amené à construire une tuile à droite d'un segment, avec les conventions ci-dessus. Ce n'est pas un problème, car si l'on applique l'une des macros précédentes à un couple de points (A, B) en sélectionnant d'abord A, puis B, la tuile ainsi construite est une tuile droite et non plus une tuile gauche, à ceci près qu'il faut tenir compte des correspondances suivantes :

Nom de la macro utilisée	Résultat de la macro en sélectionnant les points dans l'ordre B, A	Résultat de la macro en sélectionnant les points dans l'ordre A, B
Dart 1 C	Dart 1 C gauche	Dart 1 L droite
Dart 1 L	Dart 1 L gauche	Dart 1 C droite
Dart phi C	Dart phi C gauche	Dart phi L droite
Dart phi L	Dart phi L gauche	Dart phi C droite
Kite 1 C	Kite 1 C gauche	Kite 1 L droite
Kite 1 L	Kite 1 L gauche	Kite 1 C droite
Kite phi C	Kite phi C gauche	Kite phi L droite
Kite phi L	Kite phi L gauche	Kite phi C droite

La **figure 9** montre que l'application de la macro **Dart 1** L aux points A et B, sélectionnés dans l'ordre (A, B) donne comme résultat une tuile **Dart 1** C (droite) selon les conventions adoptées. Par conséquent, il n'est donc pas utile de créer les huit autres macros construisant les tuiles à droite du segment [AB].

Ordre de sélection : (*B*, *A*)

Ordre de sélection : (A, B)

Figure 9

Exercice 1 - En utilisant si nécessaire les figures **Tuiles Dart de type phi.fig** et **Tuiles Kite de type 1.fig**, construire les 4 macros restantes : Dart phi C, Dart phi L, Kite 1 C, Kite 1 L.

Exercice 2 - Continuer le pavage «Soleil».

Exercice 3 - Dessiner le pavage «Etoile» dont le centre est formé de cinq tuiles *Dart* pointant vers le sommet central.

Exercice 4 - Enumérer les 7 configurations possibles de tuiles de Penrose autour d'un sommet.